22 research outputs found

    Tiotropium inhibits proinflammatory microparticle generation by human bronchial and endothelial cells

    Get PDF
    Tiotropium is a muscarinic antagonist that reduces the risk of acute exacerbations of chronic obstructive pulmonary disease, possibly through an as yet incompletely characterized anti-inflammatory activity. We hypothesized that muscarinic activation of bronchial epithelial cells and endothelial cells causes the release of proinflammatory microparticles and that tiotropium inhibits the phenomenon. Microparticle generation was assessed by a functional assay, by flow cytometry and by NanoSight technology. Immortalized bronchial epithelial cells (16HBE) and umbilical vein endothelial cells were treated with acetylcholine in the presence of varying concentrations of tiotropium. Intracellular calcium concentration, extracellular regulated kinase phosphorylation and chemokine content in the conditioned media were assessed by commercial kits. Acetylcholine causes microparticle generation that is completely inhibited by tiotropium (50 pM). Microparticles generated by acetylcholine-stimulated cells increase the synthesis of proinflammatory mediators in an autocrine fashion. Acetylcholine-induced upregulation of microparticle generation is inhibited by an inhibitor of extracellular regulated kinase phosphorylation and by a phospholipase C inhibitor. Tiotropium blocks both extracellular regulated kinase phosphorylation and calcium mobilization, consistent with the hypothesis that the drug prevents microparticle generation through inhibition of these critical pathways. These results might contribute to explain the effect of tiotropium in reducing acute exacerbations of chronic obstructive pulmonary disease

    Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking

    Get PDF
    BACKGROUND: The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a "COPD-like" SAE transcriptome. METHODOLOGY/PRINCIPAL FINDINGS: SAE (10th-12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (I(SAE)), with healthy smokers grouped into "high" and "low" responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with I(SAE) ranging from 2.9 to 51.5%. While the SAE transcriptome of "low" responder healthy smokers differed from both "high" responders and smokers with COPD, the transcriptome of the "high" responder healthy smokers was indistinguishable from COPD smokers. CONCLUSION/SIGNIFICANCE: The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a "COPD-like" SAE transcriptome

    Down-Regulation of the Canonical Wnt β-Catenin Pathway in the Airway Epithelium of Healthy Smokers and Smokers with COPD

    Get PDF
    Background: The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state. Methodology/Principal Findings: Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators b-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro. Conclusions/Significance: Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway ma

    Identification of a novel polyfluorinated compound as a lead to inhibit human enzymes aldose reductase and AKR1B10 : structure determination of both ternary complexes and implications for drug design

    Get PDF
    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved ([alpha]/[beta])8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-­NADP+-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallo­graphic structure of the corresponding AKR1B10-NADP+-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts

    Computerized respiratory sounds can differentiate smokers and non-smokers

    Get PDF
    Cigarette smoking is often associated with the development of several respiratory diseases however, if diagnosed early, the changes in the lung tissue caused by smoking may be reversible. Computerised respiratory sounds have shown to be sensitive to detect changes within the lung tissue before any other measure, however it is unknown if it is able to detect changes in the lungs of healthy smokers. This study investigated the differences between computerised respiratory sounds of healthy smokers and non-smokers. Healthy smokers and non-smokers were recruited from a university campus. Respiratory sounds were recorded simultaneously at 6 chest locations (right and left anterior, lateral and posterior) using air-coupled electret microphones. Airflow (1.0–1.5 l/s) was recorded with a pneumotachograph. Breathing phases were detected using airflow signals and respiratory sounds with validated algorithms. Forty-four participants were enrolled: 18 smokers (mean age 26.2, SD = 7 years; mean FEV1 % predicted 104.7, SD = 9) and 26 non-smokers (mean age 25.9, SD = 3.7 years; mean FEV1 % predicted 96.8, SD = 20.2). Smokers presented significantly higher frequency at maximum sound intensity during inspiration [(M = 117, SD = 16.2 Hz vs. M = 106.4, SD = 21.6 Hz; t(43) = −2.62, p = 0.0081, d z = 0.55)], lower expiratory sound intensities (maximum intensity: [(M = 48.2, SD = 3.8 dB vs. M = 50.9, SD = 3.2 dB; t(43) = 2.68, p = 0.001, d z = −0.78)]; mean intensity: [(M = 31.2, SD = 3.6 dB vs. M = 33.7,SD = 3 dB; t(43) = 2.42, p = 0.001, d z = 0.75)] and higher number of inspiratory crackles (median [interquartile range] 2.2 [1.7–3.7] vs. 1.5 [1.2–2.2], p = 0.081, U = 110, r = −0.41) than non-smokers. Significant differences between computerised respiratory sounds of smokers and non-smokers have been found. Changes in respiratory sounds are often the earliest sign of disease. Thus, computerised respiratory sounds might be a promising measure to early detect smoking related respiratory diseases

    Water-pipe smoke condensate increases the internalization of Mycobacterium Bovis of type II alveolar epithelial cells (A549)

    Get PDF
    Background: Tuberculosis (TB) is a major global health problem, and there is an association between tobacco smoke and TB. Water pipe smoking has become an increasing problem not only in Middle Eastern countries but also globally because users consider it as safer than cigarettes. The presence of high levels of toxic substances in water-pipe smoke may be a predisposing factor that enhances the incidence of pulmonary disorders. For example, uncontrolled macropinocytosis in alveolar epithelial cells following exposure to water-pipe smoke may predispose subjects to pulmonary infection. Here, we studied the effects of water-pipe condense (WPC) on the internalization of Mycobacterium Bovis BCG by macropinocytosis in the alveolar epithelial cell line A549. Methods: A549 cells were exposed to WPC (4 mg/ml) for 24, 48, 72 and 96 h. Cell viability was studied using the methyl thiazolyldipenyl-tetrazolium bromide (MTT) reduction assay and proliferation by bromodeoxyUridine (BrdU) incorporation. Cells were exposed to FITC-Dextran (1 mg/ml) (as a control) and FITC-BCG (MOI = 10) for 20 min at 37 ° Cbeforecellswere collected and the uptake of BCG-FITC determined by flow cytometry. Similar experiments were performed at 4 ° Casacontrol . The Rho-associated protein kinase (ROCK) inhibitor Y-27632 (1 μ M) was used to assess the mechanism by which WPC enhanced BCG uptake. Results: WPC (4 mg/ml) increased the uptake of BCG-FITC after 72 (1.3 ± 0.1 fold, p < 0.05) and 96 (1.4 ± 0.05 fold, p < 0.05) hours. No effect on BCG-FITC uptake was observed at 24 or 48 h. WPC also significantly increased the uptake of FITC-Dextran (2.9 ± 0.3 fold, p < 0.05) after 24 h. WPC significantly decreased cell viability after 24 (84 ± 2%, p < 0.05), 48 (78±, 3%, p < 0.05), 72 (64 ± 2%, p < 0.05) and 96 h (45 ± 2%, p < 0.05). Y-27632 completely attenuated the increased uptake of BCG by WPC. Cell proliferation showed a decreasing trend in a time-dependent manner with WPC exposure. Conclusion: WPC exposure increased epithelial cell endocytosis activity and death as well as enhancing their capacity for macropinocytosis. Our in vitro data indicates possible harmful effects of WPC on the ability of lung epithelial cells to phagocytose mycobacterium
    corecore